Wet-spinning fabrication of shear-patterned alginate hydrogel microfibers and the guidance of cell alignment
نویسندگان
چکیده
Native tissue is naturally comprised of highly-ordered cell-matrix assemblies in a multi-hierarchical way, and the nano/submicron alignment of fibrous matrix is found to be significant in supporting cellular functionalization. In this study, a self-designed wet-spinning device appended with a rotary receiving pool was used to continuously produce shear-patterned hydrogel microfibers with aligned submicron topography. The process that the flow-induced shear force reshapes the surface of hydrogel fiber into aligned submicron topography was systematically analysed. Afterwards, the effect of fiber topography on cellular longitudinal spread and elongation was investigated by culturing rat neuron-like PC12 cells and human osteosarcoma MG63 cells with the spun hydrogel microfibers, respectively. The results suggested that the stronger shear flow force would lead to more distinct aligned submicron topography on fiber surface, which could induce cell orientation along with fiber axis and therefore form the cell-matrix dual-alignment. Finally, a multi-hierarchical tissue-like structure constructed by dual-oriented cell-matrix assemblies was fabricated based on this wet-spinning method. This work is believed to be a potentially novel biofabrication scheme for bottom-up constructing of engineered linear tissue, such as nerve bundle, cortical bone, muscle and hepatic cord.
منابع مشابه
Magnetic assembly of microfluidic spun alginate microfibers for fabricating three-dimensional cell-laden hydrogel constructs
microchannels. Interestingly, this impulse can achieve to temporarily cease the spinning process. Moreover, an optimized magnetic assembly is achieved by considering both the assembling area on a ring magnet and the MNPs concentration in microfibers. After the test of cell survival, a high cell viability of 97.2 % can be confirmed in assembled structures, which indicates that our method allows ...
متن کاملCo-release of cells and polymeric nanoparticles from sacrificial microfibers enhances nonviral gene delivery inside 3D hydrogels.
Hydrogels can promote desirable cellular phenotype by mimicking tissue-like stiffness or serving as a gene delivery depot. However, nonviral gene delivery inside three-dimensional (3D) hydrogels remains a great challenge, and increasing hydrogel stiffness generally results in further decrease in gene delivery efficiency. Here we report a method to enhance nonviral gene delivery efficiency insid...
متن کاملConstruction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture.
Hydrogels can be patterned at the micro-scale using microfluidic or micropatterning technologies to provide an in vivo-like three-dimensional (3D) tissue geometry. The resulting 3D hydrogel-based cellular constructs have been introduced as an alternative to animal experiments for advanced biological studies, pharmacological assays and organ transplant applications. Although hydrogel-based parti...
متن کاملPreparation, Modification, and Characterization of Alginate Hydrogel with Nano-/Microfibers: A New Perspective for Tissue Engineering
We aimed to develop an alginate hydrogel (AH) modified with nano-/microfibers of titanium dioxide (nfTD) and hydroxyapatite (nfHY) and evaluated its biological and chemical properties. Nano-/microfibers of nfTD and nfHY were combined with AH, and its chemical properties were evaluated by FTIR spectroscopy, X-ray diffraction, energy dispersive X-Ray analysis, and the cytocompatibility by the WST...
متن کاملThe influence of operating parameters on the drug release and antibacterial performances of alginate fibrous dressings prepared by wet spinning
Wet spinning was used to manufacture fibrous alginate hydrogel wound dressings. Samples manufactured using varied operating parameters (decreased air pressure and calcium concentration or increased nozzle diameter and alginate concentration) were compared with the control samples. The changes in the fiber size, Young's modulus, swelling ratio, fetal bovine serum (BSA) release efficacy, water va...
متن کامل